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Abstract — A new, more accurate electromagnetic model is developed for

the analysis of the coaxial-to-rectangrdar waveguide transition of the

end-launcher type. As an alternative to the well-knowm modefing via a

coupling loop, the new model describes the coupling mechanism in terms of

an excitation probe which is fed by a transmission fine intermediate

section. The two models have a few amdyticaf steps in common, but

expressions of the probe model are easier to derive and compute. The two

models are presented together with numericaf examples and experimental

verification. The superiority of the probe model is illustrated, and a design

method yielding a maximum W WR of 1.035 over 13 percent bandwidth is

outlined.

I. INTRODUCTION

I N MANY APPLICATIONS, the end-launcher transi-

tion (Fig. 1) is a preferred choice over other types of

coaxial-to-waveguide transitions. Examples are encoun-

tered where the collinearity of the coaxial line and the

waveguide is imposed by antenna feeder design require-

ments, or where a large number of such transitions are to

be optimally arranged in a limited space, as in phased

array antenna systems.

This type of transition, which converts the coaxial TEM

mode into a waveguide dominant mode, has been analyzed

before. Utilizing an electromagnetic model of loop cou-

pling, Deshpande et al. obtained an expression for the

input impedance of the rectangular [1] and circular [2]

waveguide cases. However, such a loop coupling model, as

will be verified, has limited accuracy and is valid only for

loops of small size.

In this paper, we present a more accurate electromag-

netic model of the subject transition. Instead of loop

coupling, the new model considers the region O < z < L1 as

merely a transmission line intermediate section feeding a

probe BC, which excites the waveguide. The analyses of

these loop and probe coupling models are presented in

Sections H-IV for the rectangular waveguide case. In

Section V, the range of validity of each model is illustrated

numerically and verified experimentally. In Section VI,

design methods and applications are demonstrated, and

Section VII is a conclusion.
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Fig. 1. End-launcher coaxial-to-rectangular waveguide transition,

II. THE LooP COUPLING MODEL

The loop coupling approach, explained in [1], is outlined

here because it has a few steps in common with the new

probe coupling model. Details of the analysis, however,

wiIl not be repeated except when needed to construct the

probe coupling model, or when a major difference from [1]

occurs, e.g., our use of the Coulomb, rather than Lorentz,

vector potential.

Starting with the stationary formula [3] for the input

impedance at z = O in Fig. 1,

1

J
Zin= – — E~~c.J~~cdV

1: v
(1)

a closed-form solution for Zi. is obtained through the

following three steps. First, arm ABC is assumed to sup-

port a sinusoidal trial current density:

10
‘AB(Z) ‘aZ~

cosk(~l+ L2– IZl) along AB (2a)

10
J~C(Y) = ‘ay~cosb along BC (2b)

where k is the free-space wavenumber and Iin is the input

current at point A:

lin=10cosk(L1+L2). (3)

Second, the electric field E~~c is derived from the

vector potential through the special relation representing
the Coulomb gauge:

E ABC= – juA~~c. (4)

This relation allows us to directly integrate Smythe’s ex-

pression [4] of the three-dimensional vector potential
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caused by a z-directed current element at (x’, y’, z’), its

image in the z = O waveguide wall, and their infinite set of

images in all other walls, i.e.,

([. jn~w,,, a,; cos(a’x) sin(b’y)

+ar~sin(a’x) cos(b’y) 1
)–a.k~,,l,z sin(a’x) sin(b’y) e-]p~”lz-”l. (5a)

Similarly, for a y-directed current element,

. sin ( a’x’) cos (b’y’)

“[ a,a’b’cos( a’x)sin(b’y)

–a), (k2–b’2)sin (a’x)cos(b’y)

– a=j~,,,,lb’ sin ( a’x) sin (b’y)] e-~pmnl’-”l (5b)

a’=mw/a b’= nv/b (5C)

where kcwl,l is the cutoff wavenumber and 60n is the

Kronecker delta. By substituting from (2) in (5), perform-

ing the line integrations in (5), and then substituting in (4),

an expression for the electric field is obtained. Because a

given current element may excite only the modes that have

an electric field along it, we note that TE modes are

excited only by section BC of the loop, while TM modes

are excited by both sections AB and BC.

Third, we substitute from (2)–(4) into (1) and perform

the involved integrations to obtain (6)–(28) which, to-

gether with the equivalent circuit of Fig. 2, describe Z,..

The justification of this circuit is explained in [2] and [3],

but the following is particular to this analysis. The reactive

component J’XZ, associated with higher order modes, is

derived by considering the interaction between the current

in section AB and the electric field excited by the full

length of arm ABC, not just section AB as in [1] and [2].

Likewise, the interaction between the current in section

BC and the electric field excited by arm ABC results in

the resistive component R,. and the reactive component

jX3, both associated with the dominant mode, in addition

to the reactive component jX1 associated with higher

order modes. The derivation concludes in

z,n=R,n+ j(xl+ x2+x3) (6)

R in = p%fzg (7)

X3= p*slclzg (8)

N120!7 10 2 m
xl=— z s,% i (Xln., + x,.,.)

kab < ,,,=1 ~=o

(m, n) # (1,0) (9)

l}?AB = 2k~,~,,b’L2S7&f1 e-mmn(L1+r)x (lOa)

~~

Fig. 2. Equivalent circuit of transition of Fig. 1

1 + f30n
x lnBC = —s;(/%2 - &2)L;(l_ e-2%,tiL,)e-%nr

4(xw,a

(lOb)

()12077 10 2 m
x2=— — ~ ‘6s6,x2m

kab Ii. ~ = ~

X*m= – :c; [Ko(a’r) –Ko(2a’L2)]

(11)

m

+ ~ ( ‘2nAB + ‘2n BC + ‘2.s ) (12)
~=1

X2n, = – ~C~{KO[a’(2rzb+ r)] +Ko[a’(2nb– r)]

- KO[2a’(nb + L2)] - Ko[2a’(nb - L,)] }

(15)

Zg = tip/fl (16)

-( )2102
— S4S4,S:

‘2= k2ab I,n
(17)

fl = kS3 – kS2coshap,nL1 + a~nC2 sinha~.L1 (18)

f* ’3c3+2)+(%i2

‘f4(f4-%)+c’(5-1) “9’

k
f,= e-%. L1(2C3–f4)+yS*

mn

[

2 S7 kC~.
+C2 — —–1

b’L2 c2~ a~n )
(20)

(21)

S1 = sin PL1, Cl= cos BL1 (22)

Sz = sin kL2, C2 = COSkL2 (23)

S3=sink(L1+L2), C,=cosk(L1+L2) (24)

‘ii-x.
S4 = sin —

a
S1, =sin~(xO–r) (25)

S6 = sin a’xO S6, = sins’(xO– r) (26)

ST= sin b’L2 S7, = sin b’(L2 + r) (27)

sin(b’–k)L2 sin(b’+ k)L2

“= (b’-k)L2 + (b’+k)L2 “
(28)
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It is worth mentioning that the series in (12) is a

transformation of what was originally a series with pro-

hibitively slow convergence. The transformation is analo-

gous to that of [5, eq. (5.63)].

III. THE PROBE COUPLING MODEL

In contrast to the loop coupling approach, the probe

coupling one makes explicit the role of the TEM mode in

the transition region O < z < L1 (Fig. 1). This is done by

considering section BC as a probe which, while exciting

the rectangular waveguide, is itself fed by a coaxial inter-

mediate section having Al? as its inner conductor. By

intuition, the significance of the TEM mode should in-

crease as L1 increases. Because it ignores the TEM mode,

the loop coupling model is valid only for small loops. In

the probe coupling model, therefore, the coupling between

the coaxial line and the waveguide is accomplished in two

stages. The first stage affects only the coaxial outer con-

ductor, which, upon transformation into a rectangular

shape at z = O, presents to the coaxial line a shunt capaci-

tance Cd (Fig. 2), while still supporting the TEM mode in

the rectangular coaxial line section O < z < L1. The second

stage is the coupling between the rectangular coaxial line

and the rectangular waveguide. This is achieved by probe

BC, which excites the rectangular TEIO mode together

with higher order modes.

According to the above description, the probe coupling

model may be implemented through the following steps.

The first step is to derive the input impedance at plane

BC. From (l),

1

/
Z8C= – — E~~c.J~cdV

I,: V

(29)

with J~c given by (2b), and Iin is now

~i~ = &COS kL2 . (30)

By deriving E~ ~c as shown above for the loop coupling

model, (29) results in

zBc=RBc+j(xl +x3) (31)

where R ~c, Xl, and X3 are given by relevant equations in

the set (7)-(28), but substituting 1,. with (30).

In the second step, the impedance Z~c is transformed

along the rectangular coaxial line from plane BC to plane

AD using the formula

Z~c + jZO tan kL1
Zin = R,. + jXin = ZO

ZO + jZ~c tankL1 “
(32)

With simple manipulation,

R,n= R~c/D (33)

[
Xin= ~ (xl+ X3) COS2kL,1+ ~(l– G)sin2kLl

1
(34)

X1+X3 .
D = cos2kL1 – —

Z.
sm2kL1 + G sin2 kL1 (35a)

R;C+(X1+ X3)1
G=

z;
(35b)

where ZO is the characteristic impedance of a round wire

displaced from the center of a rectangular outer conductor.

To the author’s knowledge, such an impedance has not

been derived before, but an approximate expression may

be borrowed from the trough line case [6], i.e.,

H 2b ?TXo
ZO =138 log — tanh —

b H
– Z1 (36)

T

l+U;
Zl= ~ logs

~=1 m

77’X0

i

m fra
U.= sinh —

b
cosh —

b

7rxo

/

m va
V.= sinh —

b
sinh —.

X.

(37)

(38)

(39)

Expression (36) yields accurate results in the limiting

cases available in the literature, e.g., the round wire in a

square outer conductor [7, p. 98]. Obviously, (36) may be

replaced by a more accurate expression, if available, or by

a numerically obtained value for ZO, without affecting the

integrity of this probe coupling model.

A comparison between (1)–(28) and (29)–(39) proves

that the probe model expressions are simpler to derive and

compute than those of the loop model. By eliminating the

need to model the region O < z < L1 in terms of a reac-

tance jX2, the probe model saves a substantial part of the

derivation and computer time. As for accuracy, the probe

model avoids the truncation error of the series in (11) and

(12). Also, by excluding the sinusoidal trial current distri-

bution (2a) along AB from the derivation of Z,n, the probe

model has fewer approximations.

IV. THE COAXIAL STEP DISCONTINUITY

As explained previously, the coaxial step discontinuity

at z = O (Fig. 1) may be represented by a capacitance Cd

shunted to Z,. (Fig. 2). One approximate method of calcu-

lating Cd is by equating it to the capacitance due to a step

in the outer conductor of a coaxial line, and taking the

hypothetical radius rO of the larger outer conductor such

that its characteristic impedance ZO, given by

Z. =13810g ~
r

(40)

is equal to ZO given by (36) for the actual rectangular
coaxial line section. Curves useful in obtaining Cd are

given in [7, p. 111].

V. NUMERICAL EXAMPLES AND EXPERIMENTAL

VERIFICATION

Two computer programs were developed to perform the

numerical analyses associated with the above loop and

probe coupling models. Each program computes the input

impedance at the coaxial-to-waveguide junction for given

design parameters a, b, r, R, Ll, L2, and XO and fre-

quency.
The transition models experimentally tested were basi-

cally two, but with adjustable dimensions to allow for

measurement of different combinations of design parame-
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Fig. 3. Input Impedance of a coaxiaf-to-WR229 transition. Comparison

between two theoretical models and experiment. Lz /b = 0.5, 2r = 0.174
in., x< = O, frequency = 3.95 GHz.

ters. Each of the two test models comprised a WR229

(2.29 X 1.145 in.2) connected to a 50 S? coaxial line via a

conductor ABC with L2/b = 0.5, XC= O or 0.473 in. and

L1 variable (Fig. 1). The inner and outer diameters of the

coaxial were 0.174 and 0.398 in. in one model, and 0.341

and 0.784 in. in the other. To enable L1 to vary in

increments, an array of holes was tapped in the waveguide

wall y = O, and the metal post BC was firmly joined to the

sliding inner conductor AB and the waveguide wall at C,

via screws secured internally.

Fig. 3 shows a comparison between the loop and probe

theories and experimental results for a transition having

L2/b = 0.5, 2r = 0.174 in., and xc= O. The step disconti-

nuity (presented in Section IV) is not included in the

computations of Fig. 3 in order to examine how the two

theoretical models compare on their own and to allow a

fair comparison between the probe model and the loop

models of [1] and [2], which did not account for such a

step discontinuity.

In Fig. 3 both theoretical approaches offer good qualita-

tive predictions of the input impedance over a substantial

range of kL1. Compared to the loop theory, however, the

probe theory is of greater quantitative agreement with

experiment throughout the shown range of kL1. Of partic-

ular importance is that the probe theory is in much closer

agreement with experiment in the range kL1 = 0.9 to 1.4,

where impedance matching can be achieved because R,= is

in the range 50–75 Q, commonly chosen for coaxial lines,

and X,. is close to naught. It is also noticeable that the

accuracy of the loop theory deteriorates considerably as

the loop size increases. For example the reactance vanishes

experimentally at kL1 = 1.3 and 2.2, by the probe theory at

kL1 = 1.37 and 2.7, and by the loop theory at kLl = 1.85

and 4.2.

In view of the above, one may consider the possibility

that the excellent agreement between the loop theory and

experiment reported in [1] is not general but rather is

particular to that L1 and frequency. This possibility is also

supported by the observation that at kL1 = 2.6 (Fig. 3) our

loop theory curves intersect with the experimental curve of

the resistance and the inversion of the reactance, thus

resulting in a misleadingly accurate VSWR. This could be

the case with the loop theory of [1] as well. (Note that

kL1 = 2.6 is close to the center of their range of excellent

agreement.) This possible particularity of the results in [1]

is revealed because the comparison given here between

theory and experiment is performed for the input

impedance over a few octaves, rather than for VS WR over

a 32 percent bandwidth as in [1].

Experimental verification of the probe theory is once

again illustrated in Fig. 4. This time it is an offset transi-

tion, xC/a = 0.191, L2/b = 0.5, and 2r = 0.341 in.

Adding the contribution of the coaxial step discontinu-

ity, via the procedure of Section IV, consistently improves

the agreement between theory and experiment. This is also

true for the loop theory (not shown). It is now clear that

the probe theory can predict optimum L1 (that which

results in a prescribed Zi~) with a maximum error of 0.15

in. (i.e., 0.05 h ~ or 0.88r ) while maintaining exact predic-

tion of both L2 and XC. This is valid for both the resis-

tance and the reactance, especially in the useful design

range R,. = 50–75 Q and X,n = O.

The magnitude of such an agreement is indeed excellent,

since the difference between theory and experiment is less

than the radius of the probe. This may mean, among other

explanations, that the effective length of AB is somewhere

between L1 and L1 + r, a phenomenon always associated

with loops and probes made of conductors with finite

radii.

VI. DESIGN APPLICATIONS

Having obtained such an accurate probe theory for the

end-launcher coaxial-to-rectangular waveguide transition,

the complete accurate design of such a waveguide transi-

tion is now possible. Specifically, theoretical curves of

input impedance, such as those in Fig. 5 can be utilized to

generate exact optimum values for a, b, L2, XC, r, and R,

and a value for L1 which is within r from its exact

optimum value. Adjusting L1 empirically for improved

performance over the required frequency band and using a

tuning post parallel to BC are common practices in the

industry, especially because such a step is usually required

to compensate for manufacturing tolerances.
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Depending on the application, a variety of design crite-

ria and strategies may be employed, two of which are

explained below.

d

>

A. Perfect Match at Midband

For narrow-band applications, a perfect match at mid-

band may be selected as a design criterion. This requires

simultaneous fulfillment at midband of two conditions:

Fig. 6. Locus of kL1, L2 /b, and x,/a which results in a perfectly
matched transition between a 50 (2 coaxiaf and WR229 at 3.95 GHz.R1n=ZX X,n = o (41)

where ZX is the coaxial line characteristic impedance.

From curves such as in Fig. 5, one can generate the curves

of Fig. 6, which describe the locus of the combination

(Ll, L2, XC) that simultaneously satisfies the two condi-

tions of (41). An important finding is that the coaxial line
has to be offset, in either the x or the y direction, in order

to achieve perfect match at mid’band. This means that for

impedance matching there must be a compromise in the

mechanically desirable feature of a common axis for the

coaxial and rectangular waveguides (e.g., to allow ccmve-
nient rotation).

B. Minimum VS WR over a Band

For wide-band applications, a minimum VS WR over a

frequency range is normally preferred over the above

method of a perfect match at midband. The variation of

input impedance with L1 over the frequency band 3.7–4.2

GHz is given in Fig. 7 for a coaxial-to-WR229 transition

with L2/b = 0.442 and xc/a = 0.2. It is obvious that

while an almost constant R in over the band is achievable

(at L1 = 0.74 in.), one can only aim at minimum variation
in Xi.. To achieve an optimum design, therefore, one
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were already in agreement with [10] on this point as

presented by (4), and also on their corrections of Smythe

[10, footnote 7], which are incorporated in (5).

z
I 200 I I 1 I 1 I I

I
I

i 100 :-’:”:
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should minimize the variation of KSWR over the operat-

ing frequency band using a standard optimization algo-

rithm.

It is worth mentioning that by applying this design

method (together with the probe theory and computer

program), and adding one tuning post parallel to BC, it

was possible to realize a transition with a VS’WR better

than 1.035 over the band 3.7-4.2 GHz [8].
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VII. CONCLUSION

A new electromagnetic model for the analysis of the

coaxial-to-rectangular waveguide end launcher has been

constructed. By analytical presentation and experimental

verification, the new model was found to be easier to

derive, to take less time to compute, and to be more

accurate than a previous model. This allows the design to

be put on a reliable quantitative basis.

The characteristics of the end launcher were illustrated

by numerical and experimental examples, two design pro-

cedures were presented, and a transition exhibiting – 35

dB return loss over a 13 percent bandwidth was developed.

The new model applied in this paper to the coaxial-to-

rectangular waveguide end launcher can readily be em-

ployed to analyze the coaxial-to-circular waveguide and

the stripline-to-waveguide end launchers, thus providing

more accurate and simpler solutions than those available

in the literature [2], [9].

Saad Michael Saad (M77–SM82) was born in
Alexandria, Egypt, on February 11, 1945. He

received the B. SC. and M. SC. degrees from

Alexandria University, Alexandria, Egypt, in
1965 and 1969, respectively, and the Ph.D. de-
gree from the University of London, London,

England, in 1974, all in electrical engineering.
He has held the positions of Research Assis-

tant with University College, London, England
(1970-1973), Researcher with the National Re-

search Center, Cairo, Egypt (1 974–1977), and
Research Associate with the Remote Sensing Laboratory of the Univer-

sity of Kansas (1 977–1978). Since 1978 he has been with the Andrew
Corporation, Orland Park, IL, where he is now Section Leader-Wave-

gnide Components.
Dr. Saad’s professional career has centered on research and develop-

ment in microwave passive components and antennas, with emphasis on
numericaf techniques and computer-aided design. In addition, he is

interested in professional aspects of engineering, including issues of

engineering ethics and the role of engineers in society. In pursuance of
these interests he completed an M.A. in religious studies (focusing on
ethics and society) at the University of Chicago in 1987. He is also
concerned with engineering education and is currently an Adjunct Associ-
ate Professor at the University of Illinois at Chicago. Dr. Saad served as
Chairman of the Chicago Chapter of the IEEE AP/M~ Societies

(1983-1984). He is on the Steering Committee of the International
IEEE-AP/URSI Symposium to be held in Chicago in 1992. He is a

professional engineer registered in the state of Illinois, holds seven

patents, and has authored “only” 15 technical publications.

POSTSCRIPT

At the time of manuscript submission, a flaw in the

usage of the Coulomb gauge by Smythe [4] was uncovered

by Michalski and Nevels [10]. The derivations of this paper


