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A More Accurate Analysis and Design of
Coaxial-to-Rectangular Waveguide
End Launcher

SAAD MICHAEL SAAD, SENIOR MEMBER, IEEE

Abstract — A new, more accurate electromagnetic model is developed for
the analysis of the coaxial-to-rectangular waveguide transition of the
end-launcher type. As an alternative to the well-known modeling via a
coupling loop, the new model describes the coupling mechanism in terms of
an excitation probe which is fed by a transmission line intermediate
section. The two models have a few analytical steps in common, but
expressions of the probe model are easier to derive and compute. The two
models are presented together with numerical examples and experimental
verification. The superiority of the probe model is illustrated, and a design
method yielding a maximum VSWR of 1.035 over 13 percent bandwidth is
outlined.

I. INTRODUCTION

N MANY APPLICATIONS, the end-launcher transi-

tion (Fig. 1) is a preferred choice over other types of
coaxial-to-waveguide transitions. Examples are encoun-
tered where the collinearity of the coaxial line and the
waveguide is imposed by antenna feeder design require-
ments, or where a large number of such transitions are to
be optimally arranged in a limited space, as in phased
array antenna systems. ‘

This type of transition, which converts the coaxial TEM
mode into a waveguide dominant mode, has been analyzed
before. Utilizing an electromagnetic model of loop cou-
pling, Deshpande er al. obtained an expression for the
input impedance of the rectangular [1] and circular [2]
waveguide cases. However, such a loop coupling model, as
will be verified, has limited accuracy and is valid only for
loops of small size.

In this paper, we present a more accurate electromag-
netic model of the subject transition. Instead of loop
coupling, the new model considers the region 0 < z < L; as
merely a transmission line intermediate section feeding a
probe BC, which excites the waveguide. The analyses of
these loop and probe coupling models are presented in
Sections II-IV for the rectangular waveguide case. In
Section V, the range of validity of each model is illustrated
numerically and verified experimentally. In Section VI,
design methods and applications are demonstrated, and
Section VII is a conclusion.
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End-launcher coaxial-to-rectangular waveguide transition.
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Fig. 1.

II. TeE Loor CouPLING MODEL

The loop coupling approach, explained in [1}, is outlined
here because it has a few steps in common with the new
probe coupling model. Details of the analysis, however,
will not be repeated except when needed to construct the
probe coupling model, or when a major difference from [1]
occurs, e.g., our use of the Coulomb, rather than Lorentz,
vector potential. '

Starting with the stationary formula [3] for the input
impedance at z =0 in Fig. 1,

(1)

a closed-form solution for Z,, is obtained through the
following three steps. First, arm ABC is assumed to sup-
port a sinusoidal trial current density:

1
Zy,=~— }E'[VEABC‘JABCdV

I
Jp(2) =az—2——0— cosk(L;+ L,—|z])  along AB (2a)
Tr

1
Toc(y) == ay-zﬁ cos ky along BC (2b)

where k is the free-space wavenumber and I, is the input
current at point A4:

I,=I,cosk(L;+L,). (3)

Second, the electric field E, . is derived from the
vector potential through the special relation representing
the Coulomb gauge:

E pc=— jwd pc- (4)
This relation allows us to directly integrate Smythe’s ex-
pression {4] of the three-dimensional vector potential
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caused by a z-directed current element at (x’, y’, z’), its
image in the z = 0 waveguide wall, and their infinite set of
images in all other walls, i.e.,

fz()dzzz

m=1 n= 1k2 blB

m
{ B0 % cos(ax)sin (1)
a

sin(a’x")sin(b’y’)

n
+ ay sin(a’x)cos(b’y)}

—a. k?

R

s1n(a’x)sin(b'y)}e*f/’m"'”'"'. (5a)

Similarly, for a y-directed current element,

wr= [ ¥ Y

m=1n=0 (1+80n)k abﬂm

-sin (a’x")cos(b'y’)
. [av\_a’b’cos(a’x)sin(b’y)
—a,(k*=b")sin(a’x)cos(b'y)

—a_jB,,b'sin(a’x)sin (b’y)] e~ Bmlz=2'1 (5h)
b=nun/b (5¢)

where k_,, is the cutoff wavenumber and §,, is the
Kronecker delta. By substituting from (2) in (5), perform-
ing the line integrations in (5), and then substituting in (4),
an expression for the electric field is obtained. Because a
given current element may excite only the modes that have
an electric field along it, we note that TE modes are
excited only by section BC of the loop, while TM modes
are excited by both sections 4B and BC.

Third, we substitute from (2)~(4) into (1) and perform
the involved integrations to obtain (6)—(28) which, to-
gether with the equivalent circuit of Fig. 2, describe Z .
The justification of this circuit is explained in [2] and [3],
but the following is particular to this analysis. The reactive
component jX,, associated with higher order modes, is
derived by considering the interaction between the current
in section AB and the electric field excited by the full
length of arm ABC, not just section AB as in [1] and [2].
Likewise, the interaction between the current in section
BC and the electric field excited by arm ABC results in
the resistive component R, and the reactive component
JX;, both associated with the dominant mode, in addition
to the reactive component jX; associated with higher
order modes. The derivation concludes in

a'=mw/a

Zlan;n+j(X1+X2+X3) (6)
R, = p°SiZ, (7)
Xy= P251C1Zg (8)

X = 1k20b77 ( n) leS S6rn;0(XlnAB + Xiupe)
(m,n) #(1,0) (9)
Xipap =2k 2,0'L,S,Syfre™ mnllatr) (10a)

z JZg‘tunﬁLl

9

Fig. 2. Equivalent circuit of transition of Fig. 1.

1+ &, 2012 2y 712 — 20, L1\ p— Y ”
Xinpe = da Sg(k? = b"?)L3(1— e 2mtr) e mn
(10b)
1207
X2 - kab ( ) Z S6SGr 2m (11)
2b ) )
Xom=— 7C2“[K0(a r)—Ky(2a'L,)]
+ Z (X2nAB + XZnBC + X2ns) (12)
-1
X"'nAB 2S S7rf2amn/kcmn (13)
X2nBC =D LZS7r 9f3amn/kcmn (14)

2b
X;,, = — 7C22{K0[a’(2nb + )]+ Ky[a'(2nb —1)]

— Ky|2a'(nb+ L,)]| — Ky[2a'(nb — L,)] }
(15)
Z,=wu/B (16)
, 2 (LY

p = kl b S4S4rS2 (17)
fi=kS;— kS ,coshe, L, +a, C,sinha,, L, (18)

2k kS, kS2
h=—8|G+—|+

amn amn amn

S3 2 kcmn
tfal fa— +G a -1 (19)

k
fi=e o B(2C— fu) + ;—Sz

mn

e o, Ko 20
+ j—
|G = (20
kS
fo=eomh| C 4 —2 ) (21)
amn
S, =sinBL,, C,=cosBL, (22)
S, =sin kL,, C, =coskL, (23)
S;=sink(L,+L,), Cy=cosk(L,+L,) (24)
. 7TXO .7
S, =sin — Sy,=sin—(x,—r) (25)
a a

Se,=sina’(x,—r)  (26)
S, =sinb'(L,+r) (27)
sin(d'+ k)L
(b'+ k) (28)
(' + k)L,

Se =sin a’x,

S, =sinb’'L,
sin(b'— k)L,
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It is worth mentioning that the series in (12) is a
transformation of what was originally a series with pro-
hibitively slow convergence. The transformation is analo-
gous to that of [5, eq. (5.63)].

III. TaE ProBE COUPLING MODEL

In contrast to the loop coupling approach, the probe
coupling one makes explicit the role of the TEM mode in
the transition region 0 < z < L; (Fig. 1). This is done by
considering section BC as a probe which, while exciting
the rectangular waveguide, is itself fed by a coaxial inter-
mediate section having AB as its inner conductor. By
intuition, the significance of the TEM mode should in-
crease as L, increases. Because it ignores the TEM mode,
the loop coupling model is valid only for small loops. In
the probe coupling model, therefore, the coupling between
the coaxial line and the waveguide is accomplished in two
stages. The first stage affects only the coaxial outer con-
ductor, which, upon transformation into a rectangular
shape at z = 0, presents to the coaxial line a shunt capaci-
tance C, (Fig. 2), while still supporting the TEM mode in
the rectangular coaxial line section 0 < z < L,. The second
stage is the coupling between the rectangular coaxial line
and the rectangular waveguide. This is achieved by probe
BC, which excites the rectangular TE,, mode together
with higher order modes.

According to the above description, the probe coupling
model may be implemented through the following steps.
The first step is to derive the input impedance at plane
"BC. From (1),

1
ZBC=_'172“/ E pcIpcdV (29)
m"V
with Jg- given by (2b), and 1, is now
I, = IycoskL,. (30)

By deriving E,p~ as shown above for the loop coupling
model, (29) results in

Zge=Rpe+ j( X+ X;)

(31)
where R -, X;, and X, are given by relevant equations in
the set (7)—(28), but substituting I, with (30).

In the second step, the impedance Zg. is transformed
along the rectangular coaxial line from plane BC to plane
AD using the formula

Zyc+ jZytan kL

Zin=Rm+j in=Z . .
070+ jZpctan kL,

(32)

With simple manipulation,

Rm:RBC/D (33)

1 z
X = | (X + X;) cos2hL, + 70(1— G)sin2kL,| (34)

X5

X, +
D =cos’kL,— —
0

sin2kL, + Gsin* kL, (35a)

_ R21}C+(Xl+ X3)2
Z

(35b)
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where Z, is the characteristic impedance of a round wire
displaced from the center of a rectangular outer conductor.
To the author’s knowledge, such an impedance has not
been derived before, but an approximate expression may
be borrowed from the trough line case [6], 1.e.,

2b X,
Z,=138|log ( — tanh ———) -7, (36)
T b
% 1+ U;
Z,= Y log—— 37
1 mzzl Og 1— an ( )
o mx, mma
U, =sinh - cosh (38)
. wxy | mma
V,, = sinh — /sinh (39)
b X

Expression (36) yields accurate results in the limiting
cases available in the literature, e.g., the round wire in a
square outer conductor [7, p. 98]. Obviously, (36) may be
replaced by a more accurate expression, if available, or by
a numerically obtained value for Z;,, without affecting the
integrity of this probe coupling model.

A comparison between (1)-(28) and (29)—(39) proves
that the probe model expressions are simpler to derive and
compute than those of the loop model. By eliminating the
need to model the region 0 <z < L, in terms of a reac-
tance jX,, the probe model saves a substantial part of the
derivation and computer time. As for accuracy, the probe
model avoids the truncation error of the series in (11) and
(12). Also, by excluding the sinusoidal trial current distri-
bution (2a) along 4B from the derivation of Z _, the probe
model has fewer approximations.

n’®

IV. TuEe CoaxiaL STEP DISCONTINUITY

As explained previously, the coaxial step discontinuity
at z=0 (Fig. 1) may be represented by a capacitance C,
shunted to Z,, (Fig. 2). One approximate method of calcu-
lating C, is by equating it to the capacitance due to a step
in the outer conductor of a coaxial line, and taking the
hypothetical radius r, of the larger outer conductor such
that its characteristic impedance Z,, given by

rO
Z,=138log - (40)
is equal to Z, given by (36) for the actual rectangular
coaxial line section. Curves useful in obtaining C, are
given in [7, p. 111].

V. NUMERICAL EXAMPLES AND EXPERIMENTAL
VERIFICATION

Two computer programs were developed to perform the
numerical analyses associated with the above loop and
probe coupling models. Each program computes the input
impedance at the coaxial-to-waveguide junction for given
design parameters a, b, ¥, R, L, L,, and x, and fre-
quency.

The transition models experimentally tested were basi-
cally two, but with adjustable dimensions to allow for
measurement of different combinations of design parame-
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Fig. 3. Input impedance of a coaxial-to-WR229 transition. Comparison
between two theoretical models and experiment. L, /b= 0.5,2r =0.174
in,, x, =0, frequency = 3.95 GHz.

ters. Each of the two test models comprised a WR229
(2.29X1.145 in.?) connected to a 50 @ coaxial line via a
conductor ABC with L,/b=0.5, x.=0 or 0.473 in. and
L, variable (Fig. 1). The inner and outer diameters of the
coaxial were 0.174 and 0.398 in. in one model, and 0.341
and 0.784 in. in the other. To enable L, to vary in
increments, an array of holes was tapped in the waveguide
wall y =0, and the metal post BC was firmly joined to the
sliding inner conductor AB and the waveguide wall at C,
via screws secured internally.

Fig. 3 shows a comparison between the loop and probe
theories and experimental results for a transition having
L,/b=05, 2r=0174 in.,, and x_,=0. The step disconti-
nuity (presented in Section IV) is not included in the
computations of Fig. 3 in order to examine how the two
theoretical models compare on their own and to allow a
fair comparison between the probe model and the loop
models of [1] and [2], which did not account for such a
step discontinuity.

In Fig. 3 both theoretical approaches offer good qualita-
tive predictions of the input impedance over a substantial
range of kL,. Compared to the loop theory, however, the
probe theory is of greater quantitative agreement with
experiment throughout the shown range of kL,. Of partic-
ular importance is that the probe theory is in much closer
agreement with experiment in the range kL, = 0.9 to 1.4,
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where impedance matching can be achieved because R, is
in the range 50-75 ©, commonly chosen for coaxial lines,
and X, is close to naught. It is also noticeable that the
accuracy of the loop theory deteriorates considerably as
the loop size increases. For example the reactance vanishes
experimentally at kL, =1.3 and 2.2, by the probe theory at
kL,;=1.37 and 2.7, and by the loop theory at kL,=1.85
and 4.2.

In view of the above, one may consider the possibility
that the excellent agreement between the loop theory and
experiment reported in [1] is not general but rather is
particular to that L, and frequency. This possibility is also
supported by the observation that at kL, = 2.6 (Fig. 3) our
loop theory curves intersect with the experimental curve of
the resistance and the inversion of the reactance, thus
resulting in a misleadingly accurate VSWR. This could be
the case with the loop theory of [1] as well. (Note that
kL, = 2.6 is close to the center of their range of excellent
agreement.) This possible particularity of the results in [1]
is revealed because the comparison given here between
theory and experiment is performed for the input
impedance over a few octaves, rather than for VSWR over
a 32 percent bandwidth as in [1].

Experimental verification of the probe theory is once
again illustrated in Fig. 4. This time it is an offset transi-
tion, x,/a=0.191, L,/b=10.5, and 2r = 0.341 in.

Adding the contribution of the coaxial step discontinu-
ity, via the procedure of Section IV, consistently improves
the agreement between theory and experiment. This is also
true for the loop theory (not shown). It is now clear that
the probe theory can predict optimum L, (that which
results in a prescribed Z, ) with a maximum error of 0.15
in. (i.e., 0.05 A, or 0.88r) while maintaining exact predic-
tion of both L, and x,. This is valid for both the resis-
tance and the reactance, especially in the useful design
range R =50-75Q and X =0.

The magnitude of such an agreement is indeed excellent,
since the difference between theory and experiment is less
than the radius of the probe. This may mean, among other
explanations, that the effective length of 4B is somewhere
between L, and L+ r, a phenomenon always associated
with loops and probes made of conductors with finite
radii.

VI. DESIGN APPLICATIONS

Having obtained such an accurate probe theory for the
end-launcher coaxial-to-rectangular waveguide transition,
the complete accurate design of such a waveguide transi-
tion is now possible. Specifically, theoretical curves of
input impedance, such as those in Fig. 5 can be utilized to
generate exact optimum values for a, b, L,, x_, r, and R,
and a value for L, which is within r from its exact
optimum value. Adjusting L, empirically for improved
performance over the required frequency band and using a
tuning post parallel to BC are common practices in the
industry, especially because such a step is usually required
to compensate for manufacturing tolerances.
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Depending on the application, a variety of design crite-
ria and strategies may be employed, two of which are
explained below.

A. Perfect Match at Midband

For narrow-band applications, a perfect match at mid-
band may be selected as a design criterion. This requires
simultaneous fulfillment at midband of two conditions:

(41)

R =Z, X,=0
where Z_ is the coaxial line characteristic impedance.
From curves such as in Fig. 5, one can generate the curves
of Fig. 6, which describe the locus of the combination
(L,, L,, x.) that simultaneously satisfies the two condi-
tions of (41). An important finding is that the coaxial line
has to be offset, in either the x or the y direction, in order
to achieve perfect match at midband. This means that for
impedance matching there must be a compromise in the
mechanically desirable feature of a common axis for the
coaxial and rectangular waveguides (e.g., to allow conve-
nient rotation).
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B. Minimum VSWR over a Band

For wide-band applications, a minimum VSWR over a
frequency range is normally preferred over the above
method of a perfect match at midband. The variation of
input impedance with L, over the frequency band 3.7-4.2
GHz is given in Fig. 7 for a coaxial-to-WR229 transition
with L,/b=0442 and x,/a=02. It is obvious that
while an almost constant R, over the band is achievable
(at L;=0.74 in.), one can only aim at minimum variation
in X,,. To achieve an optimum design, therefore, one
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should minimize the variation of VSWR over the operat-
ing frequency band using a standard optimization algo-
rithm.

It 1s worth mentioning that by applying this design
method (together with the probe theory and computer
program), and adding one tuning post parallel to BC, it
was possible to realize a transition with a VSWR better
than 1.035 over the band 3.7-4.2 GHz [8].

VIL

A new electromagnetic model for the analysis of the
coaxial-to-rectangular waveguide end launcher has been
constructed. By analytical presentation and experimental
verification, the new model was found to be easier to
derive, to take less time to compute, and to be more
accurate than a previous model. This allows the design to
be put on a reliable quantitative basis.

The characteristics of the end launcher were illustrated
by numerical and experimental examples, two design pro-
cedures were presented, and a transition exhibiting — 35
dB return loss over a 13 percent bandwidth was developed.

The new model applied in this paper to the coaxial-to-
rectangular waveguide end launcher can readily be em-
ployed to analyze the coaxial-to-circular waveguide and
the stripline-to-waveguide end launchers, thus providing
more accurate and simpler solutions than those available
in the literature [2], [9].

CONCLUSION

PosrtscripT

At the time of manuscript submission, a flaw in the
usage of the Coulomb gauge by Smythe [4] was uncovered
by Michalski and Nevels [10]. The derivations of this paper

were already in agreement with [10] on this point as
presented by (4), and also on their corrections of Smythe
[10, footnote 7], which are incorporated in (5).

REFERENCES

[1] M. D. Deshpande, B. N. Das, and G. S. Sanyal, “Analysis of an
end launcher for an X-band rectangular waveguide,” IEEE Trans.
Microwave Theory Tech., vol. MTT-27, pp. 731-735, Aug. 1979.

[2] M. D. Deshpande and B. N. Das, “Analysis of an end launcher for
a circular cylindrical waveguide,” IEEE Trans. Microwave Theory
Tech., vol. MTT-26, pp. 672-675, Sept. 1978.

[3] R. F. Harrington, Time Harmonic Electromagnetic Fields.
York: McGraw-Hill, 1961, section 8.11. )

[4] W.R. Smythe, Static and Dynamic Electricity, 3rd ed. New York:
McGraw-Hill, 1968, section 13.03.

[S] L. Lewin, Theory of Waveguides. New York: Wiley, 1975, p. 139.

[6] R. M. Chisholm, “The characteristic impedance of trough and slab
lines,” TRE Trans. Microwave Theory Tech., vol. MTT-4, pp.
166—172, July 1956.

[71 T. S. Saad, Ed., Microwave Engineers’ Handbook, vol. 1.
ham, MA: Artech, 1971. .

[8] S. M. Saad, “Analysis and design of the colinear coaxial-to-rectan-
gular waveguide transition,” Andrew Corporation Tech. Rep. No.
TMP-79-08, May 1979.

{91 T. Q. Ho and Y. Shih, “Analysis of microstrip line to waveguide
end launchers,” TEEE Trans. Microwave Theory Tech., vol. 36, pp.
561-567, Mar. 1988.

[10] K. A. Michalski and R. D. Nevels, “On the use of the Coulomb
gauge in solving source-excited boundary value problems of electro-
magnetics,” JEEE Trans. Microwave Theory Tech., vol. 36, pp.
1328-1333, Sept. 1988.

New

Ded-

Saad Michael Saad (M’77-SM’82) was born in
Alexandria, Egypt, on February 11, 1945. He
received the B.Sc. and M.Sc. degrees from
Alexandria University, -Alexandria, Egypt, in
1965 and 1969, respectively, and the Ph.D. de-
gree from the University of London, London,
England, in 1974, all in electrical engineering,

He has held the positions of Research Assis-
tant with University College, London, England
(1970-1973), Researcher with the National Re-
search Center, Cairo, Egypt (1974-1977), and
Research Associate with the Remote Sensing Laboratory of the Univer-
sity of Kansas (1977-1978). Since 1978 he has been with the Andrew
Corporation, Orland Park, IL, where he is now Section Leader-Wave-
guide Components.

Dr. Saad’s professional career has centered on research and develop-
ment in microwave passive components and antennas, with emphasis on
numerical techniques and computer-aided design. In addition, he is
interested in professional aspects of engineering, including issues of
engineering ethics and the role of engineers in society. In pursuance of
these interests he completed an M.A. in religious studies (focusing on
ethics and society) at the University of Chicago in 1987. He is also
concerned with engineering education and is currently an Adjunct Associ-
ate Professor at the University of Illinois at Chicago. Dr. Saad served as
Chairman of the Chicago Chapter of the IEEE AP/MTT Societies
(1983-1984). He is on the Steering Committee of the International
IEEE-AP/URSI Symposium to be held in Chicago in 1992. He is a
professional engineer registered in the state of Illinois, holds seven
patents, and has authored “only” 15 technical publications.




